این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
Journal of Medical Signals and Sensors
، جلد ۵، شماره ۱، صفحات ۳۰-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Electrocardiogram based Identification Using a New Effective Intelligent Selection of Fused Features
چکیده انگلیسی مقاله
Over the years, the feasibility of using Electrocardiogram (ECG) signal for human identification issue has been investigated, andsome methods have been suggested. In this research, a new effective intelligent feature selection method from ECG signals hasbeen proposed. This method is developed in such a way that it is able to select important features that are necessary for identificationusing analysis of the ECG signals. For this purpose, after ECG signal preprocessing, its characterizing features were extracted andthen compressed using the cosine transform. The more effective features in the identification, among the characterizing features, areselected using a combination of the genetic algorithm and artificial neural networks. The proposed method was tested on three publicECG databases, namely, MIT‑BIH Arrhythmias Database, MITBIH Normal Sinus Rhythm Database and The European ST‑T Database,in order to evaluate the proposed subject identification method on normal ECG signals as well as ECG signals with arrhythmias.Identification rates of 99.89% and 99.84% and 99.99% are obtained for these databases respectively. The proposed algorithm exhibitsremarkable identification accuracies not only with normal ECG signals, but also in the presence of various arrhythmias. Simulationresults showed that the proposed method despite the low number of selected features has a high performance in identification task.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
حمیدرضا عباسپور | hamidreza abbaspour
سید محمد رضوی | seyyed mohammad razavi
ناصر مهرشاد | nasser mehrshad
نشانی اینترنتی
http://www.jmss.mui.ac.ir/index.php/jmss/article/view/249
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات