این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Journal of Medical Signals and Sensors
، جلد ۴، شماره ۴، صفحات ۲۸۱-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Automatic detection of malignant melanoma using macroscopic images
چکیده انگلیسی مقاله
In order to distinguish between benign and malignant types of pigmented skin lesions, computerized procedures have been developed for images taken by different equipment that the most available one of them is conventional digital cameras. In this research, a new procedure to detect malignant melanoma from benign pigmented lesions using macroscopic images is presented. The images are taken by conventional digital cameras with spatial resolution higher than one megapixel and by considering no constraints and special conditions during imaging. In the proposed procedure, new methods to weaken the effect of nonuniform illumination, correction the effect of thick hairs and large glows on the lesion and also, a new threshold‑based segmentation algorithm are presented. 187 features representing asymmetry, border irregularity, color variation, diameter and texture are extracted from the lesion area and after reducing the number of features using principal component analysis (PCA), lesions are determined as malignant or benign using support vector machine classifier. According to the dermatologist diagnosis, the proposed processing methods have the ability to detect lesions area with high accuracy. The evaluation measures of classification have indicated that 13 features extracted by PCA method leads to better results than all of the extracted features. These results are 82.2% of accuracy, 77% of sensitivity and 86.93% of specificity. The proposed method may help dermatologists to detect the malignant lesions in the primary stages due to the minimum constraints during imaging, the ease of usage by the public and nonexperts, and high accuracy in detection of the lesion type.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
مریم رمضانی | maryam ramezani
علیرضا کریمیان | alireza karimian
پیمان معلم | payman moallem
نشانی اینترنتی
http://www.jmss.mui.ac.ir/index.php/jmss/article/view/238
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات