این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Journal of Medical Signals and Sensors
، جلد ۴، شماره ۱، صفحات ۵۳-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A Novel Unsupervised Approach for Minimally-Invasive Video Segmentation
چکیده انگلیسی مقاله
Background: Laparoscopy or minimally invasive surgery is a surgical procedure in which laparoscope and other surgical instruments are inserted inside body via a few small incisions. Laparoscope is used to look inside the patient's body and records displayed images. Temporal segmentation of laparoscopic videos has many applications like detecting laparoscopic anomalies and interrupts. It is prerequisite of laparoscopic action recognition for tagging laparoscopic video clips, training to the surgeons and fast retrieval of tagged laparoscopic video clips. Temporal segmentation of videos is is done with the aim of generating homogeneous segments. Methods: In this paper, a novel approach for minimally-invasive video segmentation (MIVS) is proposed. In MIVS, several data sets are extracted from laparoscopic videos for increasing the confidence and reducing error of estimation. Each extracted data set is segmented individually with Genetic Algorithm several times after outlier removal. Each time, a different cost function is used as objective function of GA. The correlation coefficient is measured between objective values of individuals of each GA execution and their associated performance measures including detection rate, recognition rate and accuracy. Cost functions having negative correlation with all mentioned performance measures are selected as cost function of the next step segmentation which segments several data sets simultaneously exploiting Multi-objective GA. Results: MIVS is tested on laparoscopic videos of Varicocelle and UPJO surgeries collected from HASHEMINEZHAD Kidney Center. Experimental results show that MIVS can segment laparoscopic videos with accuracy of 94.89%. Conclusions: MIVS outperforms previous presented segmentation methods in segmenting minimally-invasive surgical videos.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
تکتم خطیبی | toktam khatibi
محمد مهدی سپهری | mohammad mehdi sepehri
پژمان شادپور | pejman shadpour
نشانی اینترنتی
http://www.jmss.mui.ac.ir/index.php/jmss/article/view/149
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات