این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Medical Signals and Sensors، جلد ۳، شماره ۴، صفحات ۰-۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Discriminant Analysis Between Myocardial Infarction Patients and Healthy Subjects Using Wavelet Transformed Signal Averaged Electrocardiogram and Probabilistic Neural Network
چکیده انگلیسی مقاله There are a variety of electrocardiogram (ECG) based methods to detect myocardial infarction (MI) patients. This study used the signal averaged electrocardiogram (SAECG) and its wavelet coefficient as an index to detect MI. Orthogonal leads signals from 50 acute myocardial infarction (AMI) and 50 healthy subjects were selected from the national metrology institute of Germany (PTB diagnostic database). They were filtered and discrete wavelet transformed was exerted on them. Four conventional features and two new features introduced in this study were extracted from SAECG and its wavelet decompositions. Finally for data classification, probabilistic neural network were used. This method was able to detect and discriminate AMI patients from healthy subjects using the probabilistic neural network, which shows 93.0% sensitivity at 86.0% specificity with 89.5% accuracy. This technique and the new extracted features showed good promise in the identification of MI patients. However, the sensitivity and specificity is comparable with other findings and has high accuracy although we extracted only 6 features.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله احمد کشتکار | ahmad keshtkar


هادی سید عربی | hadi seyedarabi


پیمان شیخ زاده | peyman sheikhzadeh


سید حسین راستا | seyed hossein rasta



نشانی اینترنتی http://www.jmss.mui.ac.ir/index.php/jmss/article/view/182
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Articles
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات