این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Rehabilitation in Civil Engineerin، جلد ۷، شماره ۱، صفحات ۴۱-۵۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Modeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
چکیده انگلیسی مقاله Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of different percentages of RAP on resilient modulus of hot-mix asphalt (HMA). To this end, 216 resilient modulus tests were conducted for establishing the experimental dataset. Input variables for predicting resilient modulus were temperature, penetration grade of asphalt binder, loading frequency, change of asphalt binder content compared to optimum asphalt binder content and percentage of RAP. Results of modeling using feed-forward neural network (FFNN) and generalized regression neural network (GRNN) model were compared with the measured resilient modulus using two statistical indicators. Results showed that for FFNN model, the coefficient of determination between observed and predicted values of resilient modulus for training and testing sets were 0.993 and 0.981, respectively. These two values were 0.999 and 0.967 in case of GRNN. So, according to comparison of R2 for testing set, the accuracy of FFNN method was superior to GRNN method. Tests results and artificial neural network analysis showed that the temperature was the most effective parameter on the resilient modulus of HMA containing RAP materials. In addition by increasing RAP content, the resilient modulus of HMA increased.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Ahmad Mansourian |
Bitumen and Asphalt Department, Road, Building and Urban development research center, Tehran, Iran

Ali Reza Ghanizadeh |
Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran

Babak Golchin |
Department of Civil Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran


نشانی اینترنتی http://civiljournal.semnan.ac.ir/article_2638_0e11888304f93cb607fdaad526b01743.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/509/article-509-1123784.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات