این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Crop Protection، جلد ۵، شماره ۱، صفحات ۷۵-۸۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Quantitative detection of soybean rust using image processing techniques
چکیده انگلیسی مقاله Rust caused by Phakopsora pachyrhizi Syd. is a major constraint to soybean product in Asia. Early detection and possibilities of controlling plant diseases by the integration of several image processing methods has been the subject of extensive research. The main contribution of this paper is to present different methodologies for quantitatively detecting soybean rust at each stage of disease development, identify disease even before specific symptoms become visible and grade based on percentage of disease severity. Severity of rust infection levels at each stage of disease development was observed for 25 days on soybean leaf. Then color distribution and pixel relationship in rust infected leaf image was calculated based on global and local features for quantifying rust severity. Further, rust disease was categorized into grades based on infection severity levels and percentage disease index (PDI) was calculated. The maximum PDI of 95.5 was observed at 25th day and minimum PDI of 0.2 was observed at 6th day.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله jagadeesh devidas pujari | jagadeesh devidas
s. d. m. college of engineering and technology, dharwad, india.

rajesh siddarammayya yakkundimath | siddarammayya yakkundimath
k. l. e. institute of technology, hubli, india.

shamrao jahagirdar |
university of agricultural sciences, dharwad, india.

بینتی byadgi |
university of agricultural sciences, dharwad, india.


نشانی اینترنتی http://jcp.modares.ac.ir/article_13911_e8d5b1837555d1e25097dbf27e393d58.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات