این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 1 اسفند 1404
Journal of Rehabilitation in Civil Engineerin
، جلد ۳، شماره ۱، صفحات ۱۴-۲۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams
چکیده انگلیسی مقاله
A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical and geometrical parameters. These parameters contain Web width, Effective depth, Shear span to depth ratio, Concrete compressive strength, Main reinforcement ratio, Horizontal shear reinforcement ratio and Vertical shear reinforcement ratio.The ANFIS model is developed based on 214 experimental database obtained from the literature. The data used in the present study, out of the total data, 80% was used for training the model and 20% for checking to validate the model. The results indicated that ANFIS is an effective method for predicting the shear strength of reinforced concrete (RC) deep beams and has better accuracy and simplicity compared to the empirical methods.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
عطیه خواجه |
m.s student, department of civil engineering, university of sistan and baluchestan, zahedan, iran
سیدروح الله موسوی | seyed roohollah
assistant professor, department of civil engineering, university of sistan and baluchestan, zahedan, iran
mehrollah رخشانی مهر | rakhshani mehr
assistant professor, department of civil engineering, university of alzahra, tehran, iran
سازمان اصلی تایید شده
: دانشگاه الزهرا (Alzahra university)
نشانی اینترنتی
http://civiljournal.semnan.ac.ir/article_355_40c965c7a2c3c8f694b788dee531ccaf.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات