این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 1 اسفند 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۷، شماره ۲، صفحات ۲۲۵-۲۳۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Hybrid Adaptive Educational Hypermedia Recommender Accommodating User’s Learning Style and Web Page Features
چکیده انگلیسی مقاله
Personalized recommenders have proved to be of use as a solution to reduce the information overload problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. Furthermore, obtaining learner's preferences is cumbersome. Most studies have only focused on similarity between the interest profile of a user and those of others. However, it can lead to the gray-sheep problem, in which users with consistently different opinions from the group do not benefit from this approach. On this basis, matching the learner's learning style with the web page features and mining specific attributes is more desirable. The primary contribution of this research is to introduce a feature-based recommender system that delivers educational web pages according to the user's individual learning style. We propose an Educational Resource recommender system which interacts with the users based on their learning style and cognitive traits. The learning style determination is based on Felder-Silverman theory. Furthermore, we incorporate all explicit/implicit data features of a page and the elements contained in them that have an influence on the quality of recommendation and help the system make more effective recommendations.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
M. Tahmasebi |
Department of Computer Engineering, Yazd University and University of Qom, Alghadir Blvd., Qom, Iran.
F. Fotouhi |
Department of Computer Engineering and IT, University of Qom, Alghadir Blvd., Qom, Iran
M. Esmaeili |
Department of Computer Engineering, Azad University of Kashan, Kashan, Iran.
نشانی اینترنتی
http://jad.shahroodut.ac.ir/article_1190_d31edf47e2f34e5617ed05a80bd9ee71.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/480/article-480-1473903.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات