این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 21 بهمن 1404
مجله دانشکده پزشکی دانشگاه علوم پزشکی مشهد
، جلد ۶۱، شماره ۵، صفحات ۱۱۷۸-۱۱۸۸
عنوان فارسی
استفاده از شبکههای عصبی یادگیری عمیق در تشخیص درجه بدخیمی سرطان پروستات و تشخیص سرطان سینه
چکیده فارسی مقاله
مقدمه در سالهای اخیر علاقه به پژوهش در زمینه بهکارگیری الگوریتمهای هوشمند در تشخیص و طبقهبندی بیماریها به ویژه سرطان، به شدت افزایش یافته است. طبقهبندی تومور یک کار مهم در تشخیص پزشکی محسوب میشود. روشهای محاسبات نرمافزاری به دلیل عملکرد طبقهبندی آنها در تشخیص بیماریهای پزشکی اهمیت زیادی دارند. تشخیص و طبقهبندی تصاویر پزشکی یک کار چالش برانگیز است. روش کار برای تشخیص درجه بدخیمی سرطان پروستات و خوشخیم یا بدخیم بودن سرطان سینه از طبقهبندی کننده شبکه عصبی عمیق به کمک فریمورک تنسورفلو و بهرهگیری از کتابخانه کراس استفاده شده است. در مرحله آموزش، تصاویر آموزشی به همراه کلاس خروجی آن برای شبکه در نظر گرفته میشود. حین آموزش وزنهای فیلتر در هر تکرار بهروز میشوند. بهنحویکه بعد از چندین تکرار وزنهای بهینه بهروز میشوند و شبکه آموزش میبیند تا بهترین ویژگی را از تصاویر استخراج کند. نتایج روش پیشنهادی در این تحقیق که بر پایه شبکه های عصبی عمیق است، با توجه به استخراج ویژگی های موثرتر و دقیق تر، دقت تشخیص 83/95 %و 5/99 %به ترتیب در سرطان سینه و سرطان پروستات را فراهم می آورد که نسبت به روش های موجود باعث افزایش بیش از 7% در دقت تشخیص گردیده است. نتیجهگیری سرطان یکی از شایعترین بیماریهای پیشرونده در جهان است. سرطان در سلولها آغاز میشود که پایههای ساختمانی اولیه هستند که بافت را تشکیل میدهند. یکی از چالشهای موجود در تکنیکهای تشخیص تصاویر پزشکی، مشکل در تجزیه و تحلیل بافتهای متراکم است. با توجه به اینکه تشخیص توسط انسان زمانبر و دارای احتمال خطای بیشتری است، محققان در تلاش بودهاند تا با الگوریتمهای مختلف تشخیص را به صورت اتوماتیک انجام دهند.
کلیدواژههای فارسی مقاله
یادگیری عمیق، سرطان پروستات، سرطان سینه، استخراج ویژگی،
عنوان انگلیسی
Detection of Malignancy Degree in Prostate and Breast Cancers by Using Deep Neural Network
چکیده انگلیسی مقاله
Abstract Introduction: In recent years, interest in research into the application of intelligent algorithms for diagnosis and categorization of diseases, especially cancer has increased dramatically. Tumor classification is an important task in medical diagnosis. Technological calculations are important due to their classification function in diagnosis of medical illnesses. Diagnosing and classifying medical images is a challenging task. Materials and Methods: To detect the malignancy of prostate cancer and the opioid or malignant breast cancer, deep neural network classifier, which is based on Tensor flow framework and Keras library, is used. In the training phase, educational images are considered along with the output class for the network. During training, the weight of the filter is updated every time. However, after several replications, optimal weights are updated and the network is trained to extract the best feature from the images. Results: In this research, the proposed method due to using deep neural network and accurate feature extraction provides detection accuracy about 95.83% and 99.5% for breast and prostate cancers, respectively, which is more than 7% compared to other methods. Conclusion: Cancer is one of the most prevalent diseases in the world. Cancer is started from the cells, which are the basic building blocks making the tissue. One of the challenges in medical diagnostic techniques is the difficulty in analyzing dense tissues. Since the detection of the diagnosis by human is time-consuming and has a higher probability of error, the researchers have been trying to detect it automatically by using different algorithms.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
صابر فولادی | Saber Fooladi
Ms.c Student, Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
دانشجوی کارشناسی ارشد، دانشکده برق و کامپیوتر، دانشگاه بیرجند، بیرجند
حسن فرسی | Hassan Farsi
2Professor, Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
استاد، دانشکده برق و کامپیوتر، دانشگاه بیرجند، بیرجند
سجاد محمدزاده | Sajad Mohamadzadeh
3Assistant Professor, Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
استادیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه بیرجند، بیرجند، ایران
نشانی اینترنتی
http://mjms.mums.ac.ir/article_13301.html
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/101/article-101-1604885.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
مقاله پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات