این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 25 بهمن 1404
International Journal of Pediatrics
، جلد ۹، شماره ۱۱، صفحات ۱۴۸۴۲-۱۴۸۵۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Using Bagging Neural Network to Predict the Factors Affecting Neonatal Mortality
چکیده انگلیسی مقاله
Background: The rate of neonatal mortality is one of the main indices of health, treatment, and development in societies. It reflects the quality of nutrition and life of mothers as well as the rate of healthcare services that mothers and children are provided with by societies. This study aimed to identify the factors affecting neonatal mortality by using a bagging neural network in Rapidminer Software. Methods: The study was conducted on 8053 births (including 1605 death cases and 6448 control cases) all over Iran in 2015. Factors such as maternal risk factors, mother’s age, gestational age, child gender, birth weight, birth order, and congenital anomalies were utilized as the predictor variables of the bagging neural network. Some criteria, including the area under the ROC curve, as well as the property and sensitivity of the bagging neural network, were compared with the neural network model. The bagging neural network with 99.24% precision rate enjoyed better results in predicting the factors affecting neonatal mortality. Results: Our suggested method revealed that gestational age is the most significant predictor factor of a neonate's status at birth time. Besides, 1-minute Apgar, need for resuscitation, 5-minute Apgar, birth weight, congenital anomalies, and birth order, as well as diabetes and preeclampsia in mothers were identified as the most significant predicting factors after the gestational age. Conclusion: Factors discovered in this study can be considered to decrease neonatal mortality. This can help the health of mothers’ community, optimize healthcare services, and development of societies.
کلیدواژههای انگلیسی مقاله
Neonatal mortality, Data mining, Bagging Neural Network, Logistic regression, Rapidminer
نویسندگان مقاله
| Somayeh Heshmat Alvandi
Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| Morteza Ghojazadeh
School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| Mohammad Heidarzadeh
Ministry of Health, Tehran, Iran
| Saeed Dastgiri
Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| hooman nateghian
Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz University of Medical Sciences, Tabriz, Iran
نشانی اینترنتی
https://ijp.mums.ac.ir/article_18892.html
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات