این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Materials Forming، جلد ۸، شماره ۴، صفحات ۶۳-۷۵

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Modeling and Predicting the Important Properties of the PVC/Glass Fiber Composite Laminates in the Production Process by the TLBO-ANFIS Approach
چکیده انگلیسی مقاله In this paper, by considering the temperature, time, and process pressure, as the most important factors in producing the thermoplastic composites, an experimental design was performed. An adaptive neuro-fuzzy inference system (ANFIS) was utilized to estimate the important characteristics containing flexural strength, porosity volume ratio, fiber volume ratio, and flexural modulus. Then, the parameters of the ANFIS network were optimized by the teaching-learning-based optimization (TLBO) algorithm. For the purpose of modeling material behavior in the process, the experimental results were utilized for the training and validation of the adaptive inference system. The accuracy of the obtained model has been investigated by using different graphs, based on the statistical criteria of the mean absolute error, correlation coefficient, mean square error, and the percentage of mean absolute error. Based on the obtained results, the TLBO-ANFIS approach has been very effective in estimating the above-mentioned properties in the production process. The network error for estimating flexural strength, porosity volume ratio, fiber volume ratio, and flexural modulus in the teaching section was equal to 0.159%, 0.0003%, 1.074%, and 0.0001%, and the corresponding values were equal to 0.852%, 42.413%, 33.95%, and 4.894% in the testing section.
کلیدواژه‌های انگلیسی مقاله Thermoplastic composites, ANFIS network, Teaching-learning-based algorithm, Hot press

نویسندگان مقاله Ehsan Sherkatghanad |
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

Hasan Moslemi Naeini |
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

Amir Hossein Rabiee |
Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

Ali Zeinolabedin Beygi |
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

Vahid Zal |
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

Lihui Lang |
School of Mechanical Engineering and Automation, Beihang University, Beijing, China


نشانی اینترنتی https://ijmf.shirazu.ac.ir/article_6394_e5469e79034dd0bd1bc457495c3b302d.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات