این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 2 اسفند 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۹، شماره ۳، صفحات ۲۸۳-۲۹۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A Hybrid Framework for Personality Prediction based on Fuzzy Neural Networks and Deep Neural Networks
چکیده انگلیسی مقاله
In general, humans are very complex organisms, and therefore, research into their various dimensions and aspects, including personality, has become an attractive subject of research. With the advent of technology, the emergence of a new kind of communication in the context of social networks has also given a new form of social communication to humans, and the recognition and categorization of people in this new space have become a hot topic of research that has been challenged by many researchers. In this paper, considering the Big Five personality characteristics of individuals, first, categorization of related work is proposed, and then a hybrid framework based on Fuzzy Neural Networks (FNN), along with, Deep Neural Networks (DNN) has been proposed that improves the accuracy of personality recognition by combining different FNN-classifiers with DNN-classifier in a proposed two-stage decision fusion scheme. Finally, a simulation of the proposed approach is carried out. The proposed approach is using the structural features of Social Networks Analysis (SNA), along with a linguistic analysis (LA) feature extracted from the description of the activities of individuals and comparison with the previous similar researches. The results, well-illustrated the performance improvement of the proposed framework up to 83.2 % of average accuracy on myPersonality dataset.
کلیدواژههای انگلیسی مقاله
Personality Prediction, Big Five Model, Fuzzy Neural Networks, Deep Neural Networks, Social Networks Analysis
نویسندگان مقاله
N. Taghvaei |
Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
B. Masoumi |
Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
M. R. Keyvanpour |
Department of Computer Engineering, Alzahra University, Vanak, Tehran, Iran.
نشانی اینترنتی
http://jad.shahroodut.ac.ir/article_2082_bcb5c0d49541ad7886ea649f27f860d6.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات