این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Artificial Intelligence and Data Mining، جلد ۸، شماره ۴، صفحات ۴۹۱-۵۱۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
چکیده انگلیسی مقاله The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since the membership functions of each web page are different from those of other web pages, so automatic finding the number and position of TMF is significant. In this paper, a different reinforcement-based optimization approach called LA-OMF was proposed to find both the number and positions of TMFs for fuzzy association rules. In the proposed algorithm, the centers and spreads of TMFs were considered as parameters of the search space, and a new representation using learning automata (LA) was proposed to optimize these parameters. The performance of the proposed approach was evaluated and the results were compared with the results of other algorithms on a real dataset. Experiments on datasets with different sizes confirmed that the proposed LA-OMF improved the efficiency of mining fuzzy association rules by extracting optimized membership functions.
کلیدواژه‌های انگلیسی مقاله web usage mining, learning automata, fuzzy set, membership function, fuzzy association rule

نویسندگان مقاله Z. Anari |
Department of Computer Engineering and Information Technology, Payame Noor University (PNU), P. OBox,19395-4697 Tehran, Iran

A. Hatamlou |
Department of Computer Engineering, Khoy Branch, Islamic Azad University, Khoy, Iran.

B. Anari |
Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran.

M. Masdari |
Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran


نشانی اینترنتی http://jad.shahroodut.ac.ir/article_1828_476c2093c7d8110540c170adf8f3e0eb.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات