این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 2 اسفند 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۸، شماره ۴، صفحات ۵۴۵-۵۵۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
DINGA: A Genetic-algorithm-based Method for Finding Important Nodes in Social Networks
چکیده انگلیسی مقاله
Nowadays, a significant amount of studies are devoted to discovering important nodes in graph data. Social networks as graph data have attracted a lot of attention. There are various purposes for discovering the important nodes in social networks such as finding the leaders in them, i.e. the users who play an important role in promoting advertising, etc. Different criteria have been proposed in discovering important nodes in graph data. Measuring a node’s importance by a single criterion may be inefficient due to the variety of graph structures. Recently, a combination of criteria has been used in the discovery of important nodes. In this paper, we propose a system for the Discovery of Important Nodes in social networks using Genetic Algorithms (DINGA). In our proposed system, important nodes in social networks are discovered by employing a combination of eight informative criteria and their intelligent weighting. We compare our results with a manually weighted method, that uses random weightings for each criterion, in four real networks. Our method shows an average of 22% improvement in the accuracy of important nodes discovery.
کلیدواژههای انگلیسی مقاله
Social networks, Important Nodes, Genetic Algorithm, Graph Mining, Graph Data
نویسندگان مقاله
H. Rahmani |
Department of Computer Engineering, Faculty of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.
H. Kamali |
Department of Computer Engineering, Faculty of Mechanic, Electrical and Computer, Science and Research Branch, Islamic Azad University, Tehran, Iran.
H. Shah-Hosseini |
Department of Computer Engineering, Faculty of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.
نشانی اینترنتی
http://jad.shahroodut.ac.ir/article_1825_cbbf2b2d1c8472836c8611cf6a198f8e.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات