این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مدیریت فناوری اطلاعات، جلد ۱۵، شماره ۳، صفحات ۱۳۴-۱۶۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Efficient Machine Learning Algorithms in Hybrid Filtering Based Recommendation System
چکیده انگلیسی مقاله The widespread use of E-commerce websites has drastically increased the need for automatic recommendation systems with machine learning. In recent years, many ML-based recommenders and analysers have been built; however, their scope is limited to using a single filtering technique and processing with clustering-based predictions. This paper aims to provide a systematic year-wise survey and evolution of these existing recommenders and analysers in specific deep learning-based hybrid filtering categories using movie datasets. They are compared to others based on their problem analysis, learning factors, data sets, performance, and limitations. Most contributions are found with collaborative filtering using user or item similarity and deep learning for the IMDB datasets. In this direction, this paper introduces a new and efficient Hybrid Filtering based Recommendation System using Deep Learning (HFRS-DL), which includes multiple layers and stages to provide a better solution for generating recommendations.
کلیدواژه‌های انگلیسی مقاله Recommender System,Content-Based Filtering,Collaborative filtering,Movie Recommendation,Deep learning

نویسندگان مقاله A Ruchika |
Assistant Professor, Amity Institute of Information Technology, Amity University Uttar Pradesh, India.

Mayank Sharma |
Assistant Professor, Amity Institute of Information Technology, Amity University Uttar Pradesh, India.

Syed Akhter Hossain |
Ph.D., Dean, School of Science and Engineering, Canadian University of Bangladesh, Dhaka, 1212, Bangladesh.


نشانی اینترنتی https://jitm.ut.ac.ir/article_93631_af5278b8796d6b6f0d435567685b21fb.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات