این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 24 بهمن 1404
Iranian Journal of Public Health
، جلد ۵۲، شماره ۱۰، صفحات ۲۱۷۹-۲۱۸۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Prediction of Alzheimer's in People with Coronavirus Using Machine Learning
چکیده انگلیسی مقاله
Background: One of the negative effects of the COVID-19 illness, which has affected people all across the world, is Alzheimer's disease. Oblivion after COVID-19 has created a variety of issues for many people. Predicting this issue in COVID-19 patients can considerably lessen the severity of the problem. Methods: Alzheimer's disease was predicted in Iranian persons with COVID-19 in using three algorithms: Nave Bayes, Random Forest, and KNN. Data collected by private questioner from hospitals of Tehran Province, Iran, during Oct 2020 to Sep 2021. For ML models, performance is quantified using measures such as Precision, Recall, Accuracy, and F1-score. Results: The Nave Bayes, Random Forest algorithm has a prediction accuracy of higher than 80%. The predicted accuracy of the random forest algorithm was higher than the other two algorithms. Conclusion: The Random Forest algorithm outperformed the other two algorithms in predicting Alzheimer's disease in persons using COVID-19. The findings of this study could help persons with COVID-19 avoid Alzheimer's problems.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
| Shahriar Mohammadi
Information Technology Group, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran
| Soraya Zarei
Information Technology Group, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran
| Hossain Jabbari
1. Neurology Department, Penzing Teaching Hospital, Vienna, Austria 2. Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
نشانی اینترنتی
https://ijph.tums.ac.ir/index.php/ijph/article/view/30519
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات