این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Dental Research Journal، جلد ۲۰، شماره ۱۱، صفحات ۰-۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Deep learning for tooth identification and enumeration in panoramic radiographs
چکیده انگلیسی مقاله Background: Dentists begin the diagnosis by identifying and enumerating teeth. Panoramic radiographs are widely used for tooth identification due to their large field of view and low exposure dose. The automatic numbering of teeth in panoramic radiographs can assist clinicians in avoiding errors. Deep learning has emerged as a promising tool for automating tasks. Our goal is to evaluate the accuracy of a two‑step deep learning method for tooth identification and enumeration in panoramic radiographs. Materials and Methods: In this retrospective observational study, 1007 panoramic radiographs were labeled by three experienced dentists. It involved drawing bounding boxes in two distinct ways: one for teeth and one for quadrants. All images were preprocessed using the contrast‑limited adaptive histogram equalization method. First, panoramic images were allocated to a quadrant detection model, and the outputs of this model were provided to the tooth numbering models. A faster region‑based convolutional neural network model was used in each step. Results: Average precision (AP) was calculated in different intersection‑over‑:union: thresholds. The AP50 of quadrant detection and tooth enumeration was 100% and 95%, respectively. Conclusion: We have obtained promising results with a high level of AP using our two‑step deep learning framework for automatic tooth enumeration on panoramic radiographs. Further research should be conducted on diverse datasets and real‑life situations. Key Words: Deep learning, panoramic radiography, tooth identification, tooth numbering     Highlight Hossein Mohammad‑Rahimi:  Pubmed , Google Scholar
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله | Soroush Sadr


| Hossein Mohammad‑Rahimi


| Mohammad Soroush Ghorbanimehr


| Rata Rokhshad


| Zahra Abbasi


| Parisa Soltani


| Amirhossein Moaddabi


| Shahriar Shahab


| Mohammad Hossein Rohban



نشانی اینترنتی http://drj.mui.ac.ir/index.php/drj/article/view/2535
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Article(s)
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات