این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۳۴، شماره ۱۱، صفحات ۲۵۴۵-۲۵۵۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Extreme Learning Machine based Pattern Classifiers for Symbolic Interval Data
چکیده انگلیسی مقاله Interval data are usually applied where inaccuracy and variability must be considered. This paper presents a learning method for Interval Extreme Learning Machine (IELM) in classification. IELM has two steps similar to well known ELM. At first weights connecting the input and the hidden layers are generated randomly and in the second step, ELM uses the Moore–Penrose generalized inverse to determine the weights connecting the hidden and output layers. In order to use Moore–Penrose generalized inverse for determining second layer weights in IELM, this paper proposes four classification methods to handle symbolic interval data based on ELM. The first one uses a midpoint of intervals for each feature value then it applies a classic ELM. The second one considers each feature value as a pair of quantitative features and implements a conjoint for classic extreme learning machine. The third one represents interval features by their vertices and performs a classic extreme learning machine as well. The fourth one takes each interval as a pair of quantitative features after that two separated classic extreme learning machines are performed on these features and combines the results accordingly. Algorithms are tested on the synthetic and real datasets. A synthetic dataset is applied to determine the number of hidden layer nodes in an IELM. The classification error rate is considered as a comparison criterion. The error rate obtained for each proposed methods is 19.1667%, 15% , 6.5358% and 18.3333% respectively. Experiments demonstrate the usefulness of these classifiers to classify symbolic interval data.
کلیدواژه‌های انگلیسی مقاله Interval Data,Classification,Extreme learning machine

نویسندگان مقاله N. Emami |
Department of Computer Science, Faculty of Engineering and Basic Sciences, Kosar University of Bojnord, Iran

M. Kuchaki Rafsanjani |
Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran


نشانی اینترنتی https://www.ije.ir/article_138608_018680731ebb94e6e5dfdb0602b8192c.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات