این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Economic Review، جلد ۲۷، شماره ۲، صفحات ۳۴۷-۳۷۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Forecasting Gasoline Consumption in Iran using Deep Learning Approaches
چکیده انگلیسی مقاله Gasoline consumption is one of the challenging issues of energy management in Iran. The deficit of domestic production and the need for imports on one hand, and the impact of its consumption on macro-and micro-economic variables, on the other hand, cause gasoline consumption management has become more important. The more accurate, prediction of the trend of gasoline consumption is the more successful consumption management will be. Since gasoline consumption is affected by several parameters and factors, so, forecasting its consumption with high accuracy is difficult. In this paper, one recursive competitive learning method and two deep learning methods are utilized to provide more accurate forecasting of gasoline consumption. Due to the impact of gasoline consumption patterns on seasonal changes, climate, and holidays, different periods are used for training the learning of these approaches, and their efficiency is compared in terms of the standard error metrics. The comparison results show the deep learning approaches and the training patterns with 12 months result in more accurate predictions. Finally, using the best approach and obtained setting, the gasoline consumption in Iran is predicted for the next years, which shows that gasoline consumption will grow 22 percent by 2027.
کلیدواژه‌های انگلیسی مقاله Deep learning, forecasting, Gasoline Consumption

نویسندگان مقاله Neda Bayat |
Department of Economics, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Mansoor M Davoodi |
Department of Computer and Information Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

Ali Rezaei |
Faculty Statistics, Mathematics and Computer, Allameh Tabataba'i University, Tehran, Iran.


نشانی اینترنتی https://ier.ut.ac.ir/article_94021_f4058681d5b310fd4b2f1bffb13d8353.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات