این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 2 اسفند 1404
Journal of Aerospace Science and Technology
، جلد ۱۵، شماره ۱، صفحات ۲۶-۳۷
عنوان فارسی
Designing an Ultrasonic Wind Tunnel with a Steam Ejector System of Combined Cycle Power Plants
چکیده فارسی مقاله
In this article, the idea of building a supersonic wind tunnel has been provided that uses a high-pressure steam flow of a combined cycle power plant. This has been investigated by CFD method. Using the plant's output steam as a high-pressure source can be used in the ejector to create supersonic airflow in the test chamber. For this purpose, first, the numerical model has been validated in comparison with the previous numerical and experimental results. The numerical model used is the viscous compressible flow, which is performed by the k-ω-SST turbulent modeling of the turbulence model. All calculations are performed in ANSYS-FLUENT software. After validating the numerical process, various geometries have been proposed to achieve the ultrasonic secondary flow and each structure is examined numerically separately in a range of functional conditions. Through trial and error method and looking at the achievements of previous research, in a very long process and by testing several different structures, a suitable structure has been obtained to achieve the supersonic testing chamber. This structure has been studied parametrically under different functional conditions. It has been shown that the proposed structure can generate an ultrasonic flow in an acceptable range of power plant steam flow and pressure. This structure has been proposed for the first time in the literature in this field, and in no previous research has such a structure been proposed. Access to the ultrasonic secondary flow is also a major innovation of this research.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Designing an Ultrasonic Wind Tunnel with a Steam Ejector System of Combined Cycle Power Plants
چکیده انگلیسی مقاله
In this article, the idea of building a supersonic wind tunnel has been provided that uses a high-pressure steam flow of a combined cycle power plant. This has been investigated by CFD method. Using the plant's output steam as a high-pressure source can be used in the ejector to create supersonic airflow in the test chamber. For this purpose, first, the numerical model has been validated in comparison with the previous numerical and experimental results. The numerical model used is the viscous compressible flow, which is performed by the k-ω-SST turbulent modeling of the turbulence model. All calculations are performed in ANSYS-FLUENT software. After validating the numerical process, various geometries have been proposed to achieve the ultrasonic secondary flow and each structure is examined numerically separately in a range of functional conditions. Through trial and error method and looking at the achievements of previous research, in a very long process and by testing several different structures, a suitable structure has been obtained to achieve the supersonic testing chamber. This structure has been studied parametrically under different functional conditions. It has been shown that the proposed structure can generate an ultrasonic flow in an acceptable range of power plant steam flow and pressure. This structure has been proposed for the first time in the literature in this field, and in no previous research has such a structure been proposed. Access to the ultrasonic secondary flow is also a major innovation of this research.
کلیدواژههای انگلیسی مقاله
Wind-tunnel,Combine Cycle Power Plant,Computational Fluid Dynamics
نویسندگان مقاله
Hossein Shadmehr |
Mapna Group
Sajad Ghasemloo |
Assistant Professor, Malek Ashtar University of Technology
Hamid Parhizkar |
Assistant Professor, Malek Ashtar University, Tehran, Iran
نشانی اینترنتی
https://jast.ias.ir/article_144224_fed347a6a8e39eb00fcda828535235e2.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات