این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 3 اسفند 1404
Journal of Industrial and Systems Engineering
، جلد ۱۴، شماره ۲، صفحات ۱۵۹-۱۷۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Improving the multilayer Perceptron neural network using teaching-learning optimization algorithm in detecting credit card fraud
چکیده انگلیسی مقاله
Due to the necessity of electronic transactions with credit cards in this modern era and that fraudulent activity with credit cards are on the rise, the development of automated systems that can prevent such financial fraud is considered vital. This study presents a method for detecting credit card fraud by deploying a neural network that distinguishes between legitimate and illegitimate transactions and detects fraudulent activities with stolen physical credit cards. For this purpose, after collecting data in the preprocessing stage, cleaning and normalizing the data, the feature selection operation is performed using fisher discriminant analysis. After that, a multilayer perceptron (MLP) neural network is trained during the post-processing period using the teaching learning-based optimization algorithm (TLBO) to optimize credit card fraud detection. In this algorithm, local search (exploitation) is done using the teacher phase, and global searching(exploration) is done using the student phase. Moreover, the fisher discriminant analysis algorithm reduces within-class scattering. It increases between-class diffusion to increase classification accuracy and decrease the CPU time of the algorithm in the training phase. The latest available algorithms such as AdaBoost, Random Forest, CNN, and RNN are also compared with the proposed method. The results show that the proposed algorithm outperforms the mentioned algorithms regarding some standards criteria and CPU time.
کلیدواژههای انگلیسی مقاله
Classification,fraud detection,multilayer perceptron neural network,teaching-learning optimization algorithm
نویسندگان مقاله
Ehram Safari |
Institute of Communication and Information Technology, Tehran, Iran
Mozhdeh Peykari |
Department of Information and Technology Engineering, Tehran Science and Research Branch of Azad University, Tehran, Iran
نشانی اینترنتی
https://www.jise.ir/article_145672_216a06ac9dc76b41d4f2a3507e1e1b0f.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات