این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Mining and Environment، جلد ۱۵، شماره ۱، صفحات ۲۲۳-۲۳۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Prediction of Roof Failure in Pre-driven Entries and Selecting a Suitable Type of Recovery Room Method in Longwall Mining
چکیده انگلیسی مقاله In this work, two rock engineering system (RES)-based models are presented, the first model to predict the roof failure when a longwall face advances toward a pre-driven recovery room (PDRR) and the second model to select the type of recovery room method for longwall mining. For the first model, an international database of 43 case histories from the pre-driven rooms including technical parameters and type of corresponding operation outcome of each case history is considered. In this regard, a vulnerability index (VI) that refers to the risk of roof failure is calculated for each case history and the VIs are compared with the type of the corresponding outcomes. The obtained results indicate that the calculated VIs have a good adaptation with the corresponding outcomes. This approach could be used to analyze the risk of failure in PDRR, and determine the critical VI that specifies the boundary between the hazard range and the safe range that leads to an accurate operational planning. In the following, a method called multi-options RES-based model (MORESM) is adopted for the selection of recovery room methods in longwall operation. By this model, selecting the optimum option from several options in terms of many effective parameters on the system is possible. Based on the evaluations, CRR, PDRR3, and PDRR2&3 are the suitable options for the case study. This model could introduce the suitable option based on geotechnical conditions but the final decision depends on the economic policy of the managing team.
کلیدواژه‌های انگلیسی مقاله Recovery room, pre-driven entries, Longwall Mining, Rock Engineering system, Multiple-options RES-based model (MORESM)

نویسندگان مقاله Sajjad Aghababaei |
Shahid Bahonar University of Kerman, Department of Mining Engineering, Kerman, Iran

Hossein Jalalifar |
Shahid Bahonar University of Kerman, Department of Mining Engineering, Kerman, Iran

Ali Hosseini |
Department of Mining and Metallurgical Eng., Yazd University, Yazd, Iran

Farhad Chinaei |
Department of Mining Engineering, Meymeh Branch, Islamic Azad University, Meymeh, Iran

Mehdi Najafi |
Department of Mining and Metallurgical Eng., Yazd University, Yazd, Iran


نشانی اینترنتی https://jme.shahroodut.ac.ir/article_2708_939640ee43bff57ede20644a617b1ebc.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات