این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 22 بهمن 1404
The Journal of Tehran University Heart Center
، جلد ۱۸، شماره ۴، صفحات ۲۷۸-۲۸۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Prediction of the Fatal Acute Complications of Myocardial Infarction via Machine Learning Algorithms
چکیده انگلیسی مقاله
Background: Myocardial infarction (MI) is a major cause of death, particularly during the first year. The avoidance of potentially fatal outcomes requires expeditious preventative steps. Machine learning (ML) is a subfield of artificial intelligence science that detects the underlying patterns of available big data for modeling them. This study aimed to establish an ML model with numerous features to predict the fatal complications of MI during the first 72 hours of hospital admission. Methods: We applied an MI complications database that contains the demographic and clinical records of patients during the 3 days of admission based on 2 output classes: dead due to the known complications of MI and alive. We utilized the recursive feature elimination (RFE) method to apply feature selection. Thus, after applying this method, we reduced the number of features to 50. The performance of 4 common ML classifier algorithms, namely logistic regression, support vector machine, random forest, and extreme gradient boosting (XGBoost), was evaluated using 8 classification metrics (sensitivity, specificity, precision, false-positive rate, false-negative rate, accuracy, F1-score, and AUC). Results: In this study of 1699 patients with confirmed MI, 15.94% experienced fatal complications, and the rest remained alive. The XGBoost model achieved more desirable results based on the accuracy and F1-score metrics and distinguished patients with fatal complications from surviving ones (AUC=78.65%, sensitivity=94.35%, accuracy=91.47%, and F1-score=95.14%). Cardiogenic shock was the most significant feature influencing the prediction of the XGBoost algorithm. Conclusion: XGBoost algorithms can be a promising model for predicting fatal complications following MI.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
| Reza Ghafari
Pharmacy faculty, Urmia University of Medical Sciences, Urmia, Iran.
| Amir Sorayaie Azar
Department of Computer Engineering, Urmia University, Urmia, Iran.
| Ali Ghafari
*Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. * Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| Fatemeh Moradabadi Aghdam
Pharmacy faculty, Urmia University of Medical Sciences, Urmia, Iran.
| Morteza Valizadeh
Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.
| Naser Khalili
Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| Shima Hatamkhani
* Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran. * Department of Clinical Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
نشانی اینترنتی
https://jthc.tums.ac.ir/index.php/jthc/article/view/1852
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات