این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 3 اسفند 1404
مدیریت فناوری اطلاعات
، جلد ۱۶، شماره ۱، صفحات ۱۱۸-۱۳۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Chronic Kidney Disease Risk Prediction Using Machine Learning Techniques
چکیده انگلیسی مقاله
In healthcare, a diagnosis is reached after a thorough physical assessment and analysis of the patient's medicinal history, as well as the utilization of appropriate diagnostic tests and procedures. 1.7 million People worldwide lose their lives every year due to complications from chronic kidney disease (CKD). Despite the availability of other diagnostic approaches, this investigation relies on machine learning because of its superior accuracy. Patients with chronic kidney disease (CKD) who experience health complications like high blood pressure, anemia, mineral-bone disorder, poor nutrition, acid abnormalities, and neurological-complications may benefit from timely and exact recognition of the disease's levels so that they can begin treatment with the most effective medications as soon as possible. Several works have been investigated on the early recognition of CKD utilizing machine-learning (ML) strategies. The accuracy of stage anticipations was not their primary concern. Both binary and multiclass classification methods have been used for stage anticipation in this investigation. Random-Forest (RF), Support-Vector-Machine (SVM), and Decision-Tree (DT) are the prediction models employed. Feature-selection has been carried out through scrutiny of variation and recursive feature elimination utilizing cross-validation (CV). 10-flod CV was utilized to assess the models. Experiments showed that RF utilizing recursive feature removal with CV outperformed SVM and DT.
کلیدواژههای انگلیسی مقاله
Machine learning, CKD, Prediction, SVM, RF, Data analysis
نویسندگان مقاله
Baswaraj D |
Computer Science and Engineering, Vasavi College of Engineering, Hyderabad, Telangana, India.
Chatrapathy K |
School of Computing and Information Technology, REVA University, Bangalore (North), Karnataka, India.
Mudarakola Lakshmi Prasad |
Computing Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, Telangana, India.
Pughazendi N |
Computer Science and Engineering, Panimalar Engineering College, Chennai, Tamil Nadu, India.
Ajmeera Kiran |
Computer Science and Engineering MLR Institute of Technology, Dundigal, Hyderabad, Telangana, India.
Partheeban N |
School of Computing Science and Engineering, Galgotias University, Greater Noida, Uttar Pradesh, India.
Pundru Chandra Shaker Reddy |
School of Computing Science and Artificial Intelligence, SR University, Warangal-506371, Telangana, India.
نشانی اینترنتی
https://jitm.ut.ac.ir/article_96378_e101d3b5d987286cbba097c1ca064d79.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات