این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Nuclear Medicine، جلد ۳۲، شماره ۲، صفحات ۱۲۴-۱۳۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Automated deep identification of radiopharmaceutical type and body region from PET images
چکیده انگلیسی مقاله Introduction: A deep learning pipeline consisting of two deep convolutional neural networks (DeepCNN) was developed, and its capability to differentiate uptake patterns of different radiopharmaceuticals and to further categorize PET images based on the body regions was explored.
Methods: We trained two sets of DeepCNN to determine (i) the type of radiopharmaceutical ([18F]FDG and [68Ga]Ga-PSMA) used in imaging (i.e., a binary classification task), and (ii) body region including head and neck, thorax, abdomen, and pelvis (i.e., a 4-class classification task), using the 2D axial slices of PET images. The models were trained and tested for five different scan durations, thus studying different noise levels.
Results: The accuracy of the binary classification models developed for different scan duration levels was 98.9%–99.6%, and for the 4-class classification models in the range of 98.3%–99.9 ([18F]FDG) and 97.8%–99.6% ([68Ga]Ga-PSMA).
Conclusion: We were able to reliably detect the type of radiopharmaceutical used in PET imaging and the body region of the PET images at different scan duration levels. These deep learning (DL) models can be used together as a preliminary input pipeline for the use of models specific to a type of radiopharmaceutical or body region for different applications and for extracting appropriate data from unclassified images.
کلیدواژه‌های انگلیسی مقاله Positron emission tomography, Deep learning, Categorization, [18F]FDG, [68Ga]Ga-PSMA

نویسندگان مقاله Ali Ghafari |
Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Peyman Sheikhzadeh |
Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Negisa Seyyedi |
Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran

Mehrshad Abbasi |
Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran

Shadab Ahamed |
Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada

Mohammad Reza Ay |
Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Arman Rahmim |
Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada


نشانی اینترنتی http://irjnm.tums.ac.ir/article_40144_061c95cae0bd8266a3af09f60d344556.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات