این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 22 بهمن 1404
Medical Journal of Islamic Republic of Iran
، جلد ۲۸، شماره ۱، صفحات ۷۶۵-۷۷۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A diagnostic model for cirrhosis in patients with non-alcoholic fatty liver disease: an artificial neural network approach
چکیده انگلیسی مقاله
Background :Timely diagnosis of liver cirrhosis is vital for preventing further liver damage and giving the patient the chance of transplantation. Although biopsy of the liver is the gold standard for cirrhosis assessment, it has some risks and limitations and this has led to the development of new noninvasive methods to determine the stage and prognosis of the patients. We aimed to design an artificial neural network (ANN) model to diagnose cirrhosis patients with non-alcoholic fatty liver disease (NAFLD) using routine laboratory data. Methods : Data were collected from 392 patients with NAFLD by the Middle East Research Center in Tehran. Demographic variables, history of diabetes, INR, complete blood count, albumin, ALT, AST and other routine laboratory tests, examinations and medical history were gathered. Relevant variables were selected by means of feature extraction algorithm (Knime software) and were accredited by the experts. A neural network was developed using the MATLAB software. Results : The best obtained model was developed with two layers, eight neurons and TANSIG and PURLIN functions for layer one and output layer, respectively. The sensitivity and specificity of the model were 86.6% and 92.7%, respectively. Conclusion : The results of this study revealed that the neural network modeling may be able to provide a simple, noninvasive and accurate method for diagnosing cirrhosis only based on routine laboratory data.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
امید پورنیک | omid pournik
department of community medicine, school of medicine, iran university of medical sciences, tehran, iran.
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی ایران (Iran university of medical sciences)
سارا دری | sara dorri
department of medical informatics, school of medicine, mashhad university of medical sciences, mashhad, iran.
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی مشهد (Mashhad university of medical sciences)
هدیه zabolinezhad | hedieh zabolinezhad
department of medical informatics, school of medicine, mashhad university of medical sciences, mashhad, iran.
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی مشهد (Mashhad university of medical sciences)
سید موید علویان | seyyed moayed alavian
middle east liver diseases center meld , tehran, iran.
سازمان های دیگر
: Middle East Liver Diseases Center (MELD)
سعید اسلامی | saeid eslami
pharmaceutical research center, school of pharmacy, mashhad, iran, department of medical informatics, school of medicine, mashhad university of medical sciences, mashhad, iran.
سازمان اصلی تایید شده
: دانشگاه علوم پزشکی مشهد (Mashhad university of medical sciences)
سازمان های دیگر
: Pharmaceutical Research Center
نشانی اینترنتی
http://mjiri.iums.ac.ir/browse.php?a_code=A-10-1-743&slc_lang=en&sid=en
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
1
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات