این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 3 اسفند 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۱۲، شماره ۳، صفحات ۳۵۹-۳۶۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Anomaly Detection in Dynamic Graph Using Machine Learning Algorithms
چکیده انگلیسی مقاله
Today, the amount of data with graph structure has increased dramatically. Detecting structural anomalies in the graph, such as nodes and edges whose behavior deviates from the expected behavior of the network, is important in real-world applications. Thus, in our research work, we extract the structural characteristics of the dynamic graph by using graph convolutional neural networks, then by using temporal neural network Like GRU, we extract the short-term temporal
characteristics of the dynamic graph and by using the attention mechanism integrated with GRU, long-term temporal dependencies are considered. Finally, by using the neural network classifier, the abnormal edge is detected in each timestamp. Conducted experiments on the two datasets, UC Irvine messages and Digg with three baselines, including Goutlier, Netwalk and CMSketch illustrate our model outperform existing methods in a dynamic graph by 10 and 15% on
average on the UCI and Digg datasets respectively. We also measured the model with AUC and confusion matrix for 1, 5, and 10 percent anomaly injection.
کلیدواژههای انگلیسی مقاله
deep learning,Graph Neural Network,Graph-based Anomaly Detection,Temporal graph
نویسندگان مقاله
Pouria Rabiei |
Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.
Nosratali Ashrafi-Payaman |
Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.
نشانی اینترنتی
https://jad.shahroodut.ac.ir/article_3338_b70397a4c1fc54177509434cc9a6b1f1.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات