این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 3 اسفند 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۱۲، شماره ۳، صفحات ۴۲۳-۴۳۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Designing a Visual Geometry Group-based Triad-Channel Convolutional Neural Network for COVID-19 Prediction
چکیده انگلیسی مقاله
Using intelligent approaches in diagnosing the COVID-19 disease based on machine learning algorithms (MLAs), as a joint work, has attracted the attention of pattern recognition and medicine experts. Before applying MLAs to the data extracted from infectious diseases, techniques such as RAT and RT-qPCR were used by data mining engineers to diagnose the contagious disease, whose weaknesses include the lack of test kits, the placement of the specialist and the patient pointed at a place and low accuracy. This study introduces a three-stage learning framework including a feature extractor by visual geometry group 16 (VGG16) model to solve the problems caused by the lack of samples, a three-channel convolution layer, and a classifier based on a three-layer neural network. The results showed that the Covid VGG16 (CoVGG16) has an accuracy of 96.37% and 100%, precision of 96.52% and 100%, and recall of 96.30% and 100% for COVID-19 prediction on the test sets of the two datasets (one type of CT-scan-based images and one type of X-ray-oriented ones gathered from Kaggle repositories).
کلیدواژههای انگلیسی مقاله
COVID-19 prediction,Convolutional neural network,Transfer learning,Computer Vision,Image Processing
نویسندگان مقاله
Seyed Alireza Bashiri Mosavi |
Department of Electrical and Computer Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran.
Omid Khalaf Beigi |
Department of Electrical and Computer Engineering, Kharazmi University, Tehran, Iran.
Arash Mahjoubifard |
Department of Computer Engineering and Information Technology, University of Qom, Qom, Iran.
نشانی اینترنتی
https://jad.shahroodut.ac.ir/article_3341_c82746239a885029569ad6db03aca452.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات