این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 3 اسفند 1404
Journal of Industrial and Systems Engineering
، جلد ۱۴، شماره Special issue: ۱۸th International Industrial Engineering Conference، صفحات ۴۸-۵۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Prediction of marketing strategies performance based on clickstream data
چکیده انگلیسی مقاله
Today, Internet-based businesses are one of the most useful tools to make gain in the economies of developing and developed countries. It can even said that the expansion of the World Wide Web caused other businesses to seek customers in the virtual advertising and online world to increase their sales. This study presents a data-driven approach to predict the success of the marketing strategies performance of an online shopping store. The data has been collected by a Poland online shopping website in the year 2008, which has extracted in the UCI datasets. In the data preparation phase, a decision tree (DT) is developed and 13 features of customers are selected for modeling phase. In the proposed method in this research, the rminer package of R software is used. In which three classification models including neural network(NN), support vector machine (SVM), and logistic regression(LR) are developed. Then, two criteria of AUC and ROC curves are used to compare these three models. By comparing the models, it is determined that the NN technique works better than the other three models in prediction. This result can be helpful for marketing managers to plan effectively in website design to attract new visitors and shoppers.
کلیدواژههای انگلیسی مقاله
Classification,Sales forecasting,Machine Learning,clickstream Data,marketing plan,Neural Network
نویسندگان مقاله
Maryam Nezhad Afrasiabi |
Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
Akbar Esfahanipour |
Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
Ali Mohammad Kimiagari |
Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
نشانی اینترنتی
https://www.jise.ir/article_143911_49611bc8747c9aa1625eed8837b4022a.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات