این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 2 اسفند 1404
Journal of Industrial and Systems Engineering
، جلد ۱۳، شماره Special issue: ۱۷th International Industrial Engineering Conference، صفحات ۳۷-۵۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Integrating PSO-GA with ANFIS for predictive analytics of confirmed cases of COVID-19 in Iran
چکیده انگلیسی مقاله
The first case of the unknown coronavirus, referred to as COVID-19, was detected in Wuhan, China, in late December 2019, and spread throughout China and globally. The total confirmed cases globally are rising day by day. This study proposes a novel prediction model to estimate and predict the total confirmed cases of COVID-19 in the next two days, according to Iran’s confirmed cases reported before. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using a co-evolutionary PSO-GA algorithm. PSO-GA is generally used to strike a balance between exploration and exploitation capabilities enhanced further by integrating the genetic operators, i.e., mutation and crossover in the PSO algorithm. The proposed model (i.e., PSO-GA-ANFIS) thus aims to enhance the efficiency of the ANFIS model by determining ANFIS parameters using PSO-GA. The model is assessed by utilizing epidemiological data provided by John Hopkins University to forecast the COVID-19 epidemic prevalence trend of Iran in 02.20.2020-06.10.2020-time window. A comparison was also made between the proposed model and a couple of available models. The results indicated that the proposed model outperforms the other models regarding MSE, RMSE, MAPE, and R
2
.
کلیدواژههای انگلیسی مقاله
ANFIS,PSO-GA,COVID-19,Prediction Model,time series
نویسندگان مقاله
Amir Eshaghi Chaleshtori |
Department of Industrial Engineering, K.N Toosi University of Technology, Tehran, Iran
Abdollah Aghaie |
Department of Industrial Engineering, K.N Toosi University of Technology, Tehran, Iran
نشانی اینترنتی
https://www.jise.ir/article_135703_b32ad4ff24fe660f839d95c011919c83.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات