این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مهندسی مکانیک مدرس، جلد ۱۹، شماره ۳، صفحات ۷۶۵-۷۷۶

عنوان فارسی بررسی انتقال حرارت نانوسیال در جریان الکترواسموزی و فشاری متناوب در یک میکروکانال با استفاده از روش شبکه پوآسون- بولتزمن
چکیده فارسی مقاله در مطالعه حاضر، میدان جریان الکترواسموزی و فشاری نانوسیال در پتانسیل سطح همگن در میکروکانال با اعمال معادله پواسون- بولتزمن و فرض جریان دوبُعدی، آرام، تراکم‌ناپذیر و پایا بررسی شده است. توزیع نانوذرات در سیال پایه به‌شکل همگن در نظر گرفته شده و در نتیجه جریان نانوسیال به‌شکل تک‌فاز است. در این مدل‌سازی نانوسیال از مدل پاتل استفاده شده که در آن وابستگی ضریب هدایت حرارتی به دما لحاظ شده است. به‌منظور تایید صحت حل عددی، نتایج حاصل با حل تحلیلی موجود برای هر بخش مقایسه شده و مطابقت خوبی به دست آمده است. سپس در ادامه، تاثیر پارامترهایی از قبیل درصد مولار یون، کسر حجمی و قطر نانوذرات روی جریان سیال و انتقال حرارت بررسی شده است. نتایج نشان می‌دهد که با ثابت‌نگه‌داشتن میدان الکتریکی و افزایش گرادیان فشار، عدد ناسلت موضعی کاهش و با ثابت‌نگه‌داشتن گرادیان فشار و افزایش میدان الکتریکی، عدد ناسلت افزایش می‌یابد. عدد ناسلت متوسط برای قطر نانوذرات 100، 110 و 120نانومتر به‌ترتیب 45، 35 و 25% افزایش پیدا می‌کند. زمانی که 0/05=r باشد، با افزایش غلظت یون از 4-10 تا 2-10 عدد ناسلت متوسط به اندازه 10% افزایش می‌یابد. همچنین می‌توان با انتخاب زاویه فاز مناسب برای محرک‌های متناوب الکتریکی و فشاری، میزان و جهت سرعت و شکل تقعر پروفیل سرعت را کنترل نمود.
کلیدواژه‌های فارسی مقاله جریان الکترواسموزی،میکروکانال،روش شبکه بولتزمن،نانوسیال،محرک الکتریکی و فشاری متناوب،

عنوان انگلیسی Study of Heat Transfer of Periodic Electroosmotic/Pressure Driven Nanofluid Flow in a Microchannel Using the Poisson-Boltzmann Method
چکیده انگلیسی مقاله In the present study, the electroosmotic and pressure driven flow of nanofluid in a microchannel with homogeneous surface potential is investigated by using the Poisson-Boltzmann equation and the flow field is assumed to be two-dimensional, laminar, incompressible, and steady. Distribution of nanoparticles in the base fluid is assumed to be homogeneous; therefore the nanofluid flow is modeled as a single phase. The thermal conductivity of the nanofluid is modeled by using the Patel model to account for temperature dependency. In order to validate the numerical solution, the results are compared with available analytical solutions and the comparison shows a good match with the results. Then, the effects of different parameters such as ion molar percentage, volume fraction, and nanoparticles’ diameter on the flow field and heat transfer are examined. The results show that by fixing the electric field and increasing the pressure gradient, the local Nusselt number will decrease, and by fixing the pressure gradient and enhancing the electric field, the Nusselt number increases. The average Nusselt number increases about 45, 35 and 25% while nanoparticles’ diameters are 100, 110 and 120nm, respectively. For Γ=0.05, the average Nusselt number increases 10% while ion concentration changes from 10-4 to 10-2. Furthermore, the direction and magnitude of velocity and concavity of the velocity profile can be controlled by choosing a suitable phase angle between electrical and pressure driven flow parameters.
کلیدواژه‌های انگلیسی مقاله جریان الکترواسموزی,میکروکانال,روش شبکه بولتزمن,نانوسیال,محرک الکتریکی و فشاری متناوب

نویسندگان مقاله نیما شیخی‌زاد |
گروه تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

محمد کلته |
گروه تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران


نشانی اینترنتی https://mme.modares.ac.ir/article_10620_ccd91e1ba5185b35ec0f3dd802e9777b.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات