این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 20 بهمن 1404
لیزر پزشکی
، جلد ۲۲، شماره ۲، صفحات ۴۲-۴۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
AI-Driven Optimization of Long-Term Potentiation Protocols in an Experimental Model of Alzheimer’s Disease
چکیده انگلیسی مقاله
Background:
Alzheimer’s disease (AD), one of the most prevalent neurodegenerative disorders, is marked by progressive memory loss and cognitive decline. With the rapid advancement of artificial intelligence (AI), data-driven approaches have become increasingly important in both basic and clinical neuroscience research. While animal models remain indispensable for elucidating disease mechanisms and testing therapeutic strategies, such experiments are often costly and time-consuming. This study, therefore, sought to refine the experimental protocol for inducing long-term potentiation (LTP) in an animal model of AD through AI-driven data mining techniques.
Methods:
Electrophysiological data were obtained from male Wistar rats (n = 36) divided into three groups: control, sham-operated, and AD. The AD model was induced via selective lesioning of the Basal Nucleus of Meynert (NBM) using ibotenic acid. Data preprocessing and analysis were performed in Python. Feature selection and ranking were conducted using Mutual Information, Gain Ratio, and Gini Index, followed by correlation-based filtering through the visualization of heatmaps. Features with low predictive power or high redundancy were systematically excluded to construct a more efficient classification framework.
Results:
Feature importance analysis identified
Mean Per.PSA.B6–B8
and
Mean Per.Slop.B6–B8
as highly predictive variables, whereas pre-tetanic measures (
Mean Per.PSA.B3–B4
and
Mean Per.Slop.B3–B4
) contributed minimally and were excluded. Likewise, high-intensity stimulation features (
Mean PSA600–1000
and
Mean Slop600–1000
) demonstrated more substantial predictive value compared to low-intensity counterparts (<600 μA), supporting their retention in the optimized protocol. Correlation analysis confirmed these findings by highlighting redundancy among low-importance features.
Conclusions:
The integration of feature importance metrics with correlation-based filtering enabled the identification of key electrophysiological markers while eliminating redundant variables from the LTP protocol. This optimization enhanced the accuracy, stability, and interpretability of machine learning models, while simultaneously reducing experimental costs, duration, and data collection requirements. Dimensionality reduction further improved computational efficiency and predictive performance, particularly in complex architectures.
Significance:
This study introduces the first evidence-based, machine learning–guided protocol optimization framework in Alzheimer’s research, bridging computational intelligence with neurophysiological modeling to accelerate translational discovery.
کلیدواژههای انگلیسی مقاله
Alzheimer’s Disease, Basal Nucleus of Meynert, Long-term Potentiation (LTP), Artificial Intelligence, Feature Selection, Data Mining, Wistar Rat
نویسندگان مقاله
هاله فاتح | Haleh Fateh
Lifestyle medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
مانیا اصغرپور | Mania Asgharpour
Department of Psychology, Karaj Branch, Islamic Azad University, Karaj, Iran
مجتبی خیاط عجمی | Mojtaba Khayatajami
Lifestyle medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
سید بهنام الدین جامعی | Seyed Behnamedin Jameie
Neurosciencr research center, Iran university of medical sciences, tehran, Iran
آریا درخشش | Arya Derakhshesh
Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
مونا فرهادی | Mona Farhadi
Department of Microbiology, Ka.C., Islamic Azad University, Karaj, Iran
سبحان کاظمی | Sobhan Kazemi
School of Medicine, Iran University of Medical Sciences, Tehran, Iran
حسام الدین علامه | Hesameddin Allameh
Lifestyle medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
نسرین حسینی | Nasrin Hosseini
Neurosciencr research center, Iran university of medical sciences, tehran, Iran
نشانی اینترنتی
http://icml.ir/browse.php?a_code=A-10-652-2&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
عمومی
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات